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Abstract

In this paper, we report on the design and analysis of a multilevel method for the solution of the Ornstein–Zernike

Equations and related systems of integro-algebraic equations. Our approach is based on an extension of the Atkinson–

Brakhage method, with Newton-GMRES used as the coarse mesh solver. We report on several numerical experiments

to illustrate the effectiveness of the method. The problems chosen are related to simple short ranged fluids with con-

tinuous potentials. Speedups over traditional methods for a given accuracy are reported. The new multilevel method is

roughly six times faster than Newton-GMRES and 40 times faster than Picard.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we propose a fast multilevel method for the solution of a class of integral equations called

the Ornstein–Zernike (OZ) equations, which are useful in calculating probability distributions of matter

(atoms) in fluid states [10]. Our approach is faster than a Newton–Krylov approach, such as the one

proposed in [2,22], because the linear solver is only used on a coarse mesh problem.

The OZ equations were initially designed to model density fluctuations near the critical point via the

equilibrium theory of liquids [8,15]. Since then the range of validity and usefulness has been extended to

include the entire range of fluid states. This set of nonlinear coupled integral equations has been derived

from the full partition function for atomic systems [20] and while essentially never solved without some
approximations has proved a useful tool for understanding liquids at the atomic level for over 50 years.

While the OZ equation has two unknowns it is usually closed with another often algebraic relation between

the two unknown functions. Two useful approximate closure relations are the Percus–Yevick equation [16]

and the hyper netted chain equation [21]. The hypernetted chain equation on which we have concentrated is

transcendentally nonlinear and includes the Percus–Yevick terms. The OZ and HNC equations then
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provide essentially two equations and two unknowns and when convenient the HNC equation may be

substituted into the OZ equation to provide a single nonlinear integral equation for the unknown prob-

ability distribution function.
The equations, when the physical parameters are reasonably adjusted, have solutions which can be

achieved by a variety of techniques [10]. Those methods include Picard iteration with or without relaxation

and basis set (variational) methods. In cases where the physical parameters make the equations stiff, it-

erative solutions are particularly tedious.

The objectives of this paper are to describe a new multilevel approach for solving the OZ equations and

apply that approach to two examples. The multilevel method is based on the enhanced version of the

Atkinson–Brakhage [1,3] method from [12]. The method of [12] will compute the solution to the accuracy of

truncation error in roughly twice the cost of an evaluation of the nonlinear function on the finest mesh.
In their simplest isotropic form the OZ equations are a system consisting of an integral equation

hðrÞ ¼ cðrÞ þ qðh � cÞðrÞ; ð1Þ

where

ðh � cÞðrÞ ¼
Z

cðkr� r0kÞhðkr0kÞdr0 ð2Þ

and the integral is over R3. For this example, we take the unknown functions h and c to be radially

symmetric, i.e. functions only of the distance r ¼ krk of r from the origin, which implies that the convo-

lution h � c is as well.

q is the total number density usually expressed in particles per volume such as atoms per cubic angstrom;
h is the radial pair correlation function and c is the so-called direct correlation function and may be taken to

be defined by this equation. The total radial correlation function, h, is an experimental observable from X-

ray or neutron diffraction experiments on fluids which provides a connection for this theory to physics.

A naive approach to evaluation of ðh � cÞ, a function of the scalar variable r, would be to evaluate the

three-dimensional integral in (2). However, the convolution h � c can be computed with only one-dimen-

sional integrals using the spherical-Bessel transform. If h decays sufficiently rapidly, we define

ĥðkÞ ¼HðhÞðkÞ ¼ 4p
Z 1

0

sinðkrÞ
kr

hðrÞr2 dr

and

hðrÞ ¼H�1ðĥÞðrÞ ¼ 1

2p2

Z 1

0

sinðkrÞ
kr

ĥðkÞk2 dk:

We compute h � c by discretizing the formula

h � c ¼H�1ðĥĉÞ; ð3Þ

where ĥĉ is the pointwise product of functions.

Next we can view the closure equation as an algebraic constraint. Here, we chose the HNC equation

which may be derived as an approximation from the partition function for the system.

expð�buðrÞ þ hðrÞ � cðrÞÞ � hðrÞ � 1 ¼ 0 for all 06 r61: ð4Þ

The unknowns are h; c 2 C½0;1�. We truncate the interval to ½0; L�, for some L <1, for computational

convenience, and consider h; c 2 C½0; L� for L <1. Here, C½0; L� is the space of continuous real-valued

functions on the interval ½0; L�.
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In (4), u is the pair potential between particles. Here, we will take the usual Lennard-Jones potential as

typical of continuous, short ranged potentials

uðrÞ ¼ 4�
r
r

� �12�
� r

r

� �6�
: ð5Þ

In (4) and (5), b, �, and r are parameters. In particular, b is the inverse of the product of absolute tem-

perature and Boltzmann�s constant, � is the well depth of the potential, and r determines the size of the
particles, essentially the diameter. Throughout this paper we assume that the potential is continuous. Our

convergence results require continuity. We have not considered potentials and correlations with disconti-

nuities and or discontinuous derivatives, such as hard-sphere potentials.

In this paper, we formulate (1)–(4) as a compact fixed point problem for c. By this we mean an equation

of the form

u ¼KðuÞ; ð6Þ

where K0ðuÞ, the Fr�echet derivative of K is a compact operator on X ¼ C½0; L�Þ. Here, K is computed in

stages. Given c we compute h by solving

h� qc � h ¼ c: ð7Þ

We can solve (7) efficiently using the spherical-Bessel transform and (3) by

h ¼H�1 ĉ
1� qĉ

 !
: ð8Þ

Then, we use (4) to define

KðcÞ ¼ expð�bu� ðh� cÞÞ � ðh� cÞ � 1: ð9Þ

Depending on the context, we will express (6) as a fixed point problem or a nonlinear equation

FðuÞ ¼ u�KðuÞ ¼ 0: ð10Þ

Eqs. (1)–(4) are representative of more general systems of equations [7,18] in which the q may be unknown

and/or the unknowns may be matrix-valued. Our approach to discretizaions and intergrid transfers will, in

principal, solve these larger systems. We will explore this in future work. In this paper, we focus entirely on

the simple system (1)–(4).
2. Algorithms

We begin with a discussion of the discretization and intergrid transfers. We then discuss three solution

approaches, Picard iteration, Newton-GMRES, and the new multilevel method. Each of the three solvers,

when implemented efficiently, will use at least the coarse-to-fine intergrid transfer.

2.1. Discretization

The notation is complicated by the need to refer to the mesh size for both the approximate solutions and

the discretized nonlinear equations.

We will approximate c by piecewise linear functions. The approximating space is Vd the space of

piecewise linear functions with nodes on
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Xd ¼ frdi g
N
i¼1;

where d ¼ L=ðN � 1Þ is the mesh width and rdi ¼ ði� 1Þd. We will approximate the integral operators with
the trapezoid rule. Since the approximation to the spherical-Bessel transform (13) is second-order accurate,

and the discrete inverse is the inverse of the discrete transform, the approximation of the convolution

integral, as we will define it in (14) is second-order accurate.

Our fine-to-coarse mesh intergrid transfer will be based on the usual L2 projection onto Vd. For

u 2 C½0; L� let

ðPduÞðrÞ ¼
Z L

0

pdðr; r0Þuðr0Þdr0 ¼
XN
i;j¼1

/iðrÞlij
Z L

0

uðr0Þ/jðr0Þdr0; ð11Þ

where f/ig are the nodal PL basis functions and the coefficients flijg are defined through the equations

dij ¼
XN
k¼1

lik

Z L

0

/kðr0Þ/jðr0Þdr0; ð12Þ

where dij is the Kronecker delta. Because of (11) and (12), Pd� ¼ P 2
d ¼ Pd, making Pd the projection onto Vd.

Pd is an integral operator with kernel

pdðr; r0Þ ¼
XN
i;j¼1

lij/iðrÞ/jðr0Þ:

For u; v 2 Vd we compute the discrete convolution indirectly using a discrete spherical-Bessel transform. We

begin by discretizing frequency in a way that allows us to use the fast Fourier transform to evaluate the

convolution. Let kj ¼ ðj� 1Þdk, where dk ¼ p=L (so dkd ¼ p=ðN � 1Þ). We define, for 26 j6N � 1

v̂j ¼HðvÞðkjÞ ¼
4pd2

ðj� 1Þdk
XN�1
i¼2
ði� 1Þvi sinðði� 1Þðj� 1ÞdkdÞ

¼ 4pd3ðN � 1Þ
j� 1

XN�1
i¼2
ði� 1Þvi sinðði� 1Þðj� 1Þp=ðN � 1ÞÞ; ð13Þ

where vi ¼ vðriÞ. Then, for 26 i6N � 1,

H�1ðv̂Þi ¼
1

2ði� 1Þpd3
XN�1
j¼2

kv̂j sinðði� 1Þðj� 1Þp=ðN � 1ÞÞ:

Finally, define for 26 i6N � 1,

ðu � vÞi ¼H�1ðûv̂Þ;

where ûv̂ denotes the component-wise product. We set ðu � vÞN ¼ 0 and define ðu � vÞ1 by linear interpolation

ðu � vÞ1 ¼ 2ðu � vÞ2 � ðu � vÞ3:

Our discrete convolution operator is the piecewise linear interpolant of fðu � vÞig
N
i¼1 at the nodes frigNi¼1:

Qdðu; vÞðrÞ ¼
XN
i¼1

/iðrÞðu � vÞi; ð14Þ
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where ui ¼ uðrdi Þ, vi ¼ vðrdi Þ. The sum in (14) can be evaluated with a fast Fourier transform in

OðN logNÞ floating operations. We define Kd in terms of its values at the nodes. For c 2 Cð½0; L�Þ and
d > 0, we let ci ¼ cðrdi Þ and solve for the nodal values fhig of h 2 V d. The fully discrete equation for the
nodal values is

hi � qðc � hÞi ¼ ci; 16 i6N ; ð15Þ

which, analogous to (7) and (8), we can do with the transformed equation

hi ¼H�1 ðĉÞi
1� qðĉÞi

 !
: ð16Þ

Then KdðcÞ 2 V d is defined using the algebraic constraint

expð�bui þ hi � ciÞ � hi � 1 ¼ 0; 16 i6N ; ð17Þ

as

KdðcÞ ¼ expð�bud � ðh� cÞÞ � ðh� cÞ � 1; ð18Þ

where ud is the piecewise linear interpolant of u.
We approximate the solution of (1)–(4) with the function cd 2 Vd that satisfies

cd �KdðcdÞ ¼FdðcdÞ ¼ 0: ð19Þ

Note that (19) is equivalent to a fully discrete system (15)–(17) for the values of cd 2 Vd at the nodes, which
is the finite-dimensional system that one solves numerically.

The Kantorovich theorem [11], the uniform Lipschitz continuity of F0
d, and the fact that the discretized

convolution is second-order accurate, imply that if c� is sufficiently smooth and F0ðc�Þ is nonsingular, then
(19) has a solution cd for all d sufficiently small, and that

• cd ¼ c � þOðd2Þ,
• F0

dðcdÞ is nonsingular for d sufficiently small.

Moreover, for all c 2 Cð½0; 1�Þ, K0
dðcÞ !K0ðcÞ in the operator norm on Cð½0; 1�Þ. Therefore,

K0ðcdÞ !K0ðc�Þ in the operator norm.

2.2. Nested iteration

Both of the algorithms in this paper use multiple meshes and require intergrid transfers. Following

standard notation [4], we let Idtds be the intergrid transfer between a source Vds and target Vdt . Nested iteration

requires only a coarse-to-fine transfer, in which ds > dt and we do this transfer at the fully discrete level with

piecewise linear interpolation. We identify Cð½0; 1�Þ with X0 and use the notation I0d for the map that in-

terpolates a vector in Xd to produce piecewise linear functions h and c.
A nested iteration approximately solves FðcÞ ¼ 0 on a sequence of meshes, terminating with a solution

at a target, finest mesh.
The nonlinear solve inside the loop of Algorithm nest_generic is often only a single step of an ap-

proximate Newton iteration. We advocate two such nested iteration algorithms here. They differ only in

how the approximate Newton step on each mesh is computed. The coarse mesh has width D and the mesh is

refined by halving the width. The ultimate mesh width is d ¼ 2�lmaxD.
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Algorithm 1. Generic nested iteration.

nest_generic(c;F;D; lmax)

l 0; d D; cD0  c
Solve FdðcDÞ ¼ 0 to high accuracy with cD0 as the initial iterate.
while l < lmax do

d d=2; l lþ 1

Interpolate c2d to Xd to obtain cd0
Solve F0

dðcdÞ ¼ 0 to reasonable accuracy with cd0 as the initial iterate.

end while

For the computations in this paper, we used nested grids with the mesh size reduced by a factor of

two at each level. The design of the algorithms allows for non-nested grids. Second-order accuracy

implies that the truncation error should be reduced by a factor of four at each level. To that end we

solve the equation on the coarsest mesh of high precision, driving the nonlinear residual to a very small

value, and then ask that the nonlinear solver reduce the nonlinear residual by a factor of 10, for ex-

ample, on the subsequent, finer grids. This took a single nonlinear iteration in the computations reported
in Section 3.
2.3. Nested Picard iteration

The most direct approach, and most common in the literature, is successive substitution or Picard it-

eration. The iteration is

cnþ1 ¼KðcnÞ: ð20Þ

Picard iteration can be rapidly convergent. In fact, the fast multilevel method in Section 2.5 can the thought
of as a type of Picard iteration, but not for the original map.

For the problems considered in this paper, Picard iteration is slow. A nested iteration will improve its

performance, and we include a nested Picard iteration in the comparisons in Section 3.

2.4. Nested Newton-GMRES

The Newton-GMRES method is an inexact Newton method which approximates the solution of the

linear equation for the Newton step from cc,

F0ðccÞs ¼ �FðccÞ; ð21Þ

with a GMRES [19] iteration. The termination criterion for the linear iteration is the standard [9,13] inexact

Newton condition

kF0ðccÞsþFðccÞk6 gkFðccÞk; ð22Þ

where g is a parameter, which we set to 1=10 in all of the computations reported in Section 3.

The Newton-GMRES code NITSOL [17] was applied to the OZ equations in [2]. The algorithm per-

formed well, which is not surprising in view of the mesh-independence results for GMRES when applied to

integral equations.

Mesh-independence of the GMRES iteration will follow from the convergence of K0ðcdÞ to K0ðc�Þ in
the operator norm [5,6]. This means that then the number of GMRES iterations needed to satisfy (22) from
an initial iterate of s ¼ 0 is independent of the level d of discretization.
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Algorithm 2. Newton-GMRES

newton-gmresðc;F; sa; sr; gÞ
Evaluate FðcÞ; s srkFðcÞk þ sa.
while kFðcÞk > s do
Solve the linear system F0ðcÞs ¼ �FðcÞ
with GMRES and terminate when (22) holds.

c cþ s
Evaluate FðcÞ.

end while

Our implementation of nested Newton-GMRES uses newton-gmres to solve the coarse mesh equation to

high precision. On the finer meshes we ask that the size of the residual be reduced by a factor of 10. This

nesting is a step beyond the method in [2] and substantially improves performance, because the most of the

matrix–vector products are done on coarse grids.

The theory in [6] implies that the number of GMRES iterations at each level is bounded independently of

d. Since each GMRES iteration requires a function evaluation for the forward difference approximation to
the Jacobian-vector product and only one nonlinear iteration per level will be needed if the coarse mesh

solution is sufficiently accurate, the number of calls to the function at each level is bounded. Let CF ðdÞ
denote the cost of a function evaluation on Xd. For the examples considered here

CF ðdÞ ¼ Oðlogð1=dÞ=dÞ:

Assume that no more than CG GMRES iterations are needed at each level. Then, the cost of the solve can

be bounded by

ðCG þ 1Þ
Xlmax

l¼0
CF ð2l=D logð2l=DÞ6 2ðCG þ 1ÞCF ðdlmax

Þ: ð23Þ

Hence, if the coarse mesh solution is sufficiently accurate, a solution accurate to truncation error can be
obtained at a cost proportional to that of a fine-mesh function evaluation. The proportionality constant is

related to the number of GMRES iterations needed for each nonlinear iteration.
2.5. Multilevel iteration

In this section, we describe an approximate Newton method that uses an extension of the method in [12]

to approximate the Newton step. The idea is to use a coarse mesh approximate inverse of F0ðcÞ and base

the computation of the approximate Newton step on that approximate inverse.
The approach in [12], which we follow in this section, is a degenerate kernel approach for solving linear

second kind Fredholm integral equations of the form

ðI � KÞuðrÞ ¼ uðrÞ �
Z L

0

kðr; r0Þuðr0Þdr0 ¼ f ðrÞ: ð24Þ

The approach is to build an approximate inverse of I � K and use that to solve the discretization of (24) on

Xd. We approximate K by KD, where

ðKDuÞðrÞ ¼
Z L

0

kDðr; r0Þuðr0Þdr0 � ðKuÞðrÞ ¼
Z L

0

kðr; r0Þuðr0Þdr0;
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where

kDðr; r0Þ ¼
X
i;j

kðrDi ; rDj Þ/iðrÞ/jðr0Þ

and /j is the piecewise linear ‘‘hat function’’ (or ‘‘rooftop function’’) centered at rDj . The operators I � KD

converge in the operator norm to I � K and, therefore, ðI � KDÞ�1 is an approximate inverse of I � K and

can be used as a preconditioner for a Richardson iteration to solve the discrete problem on Xd for any
d < D.

The preconditioned Richardson iteration for the discretization of (24) is

uþ ¼ uc � ðI � KDÞ�1ðf � ðI � KÞucÞ:

The implementation requires one fine-mesh operator–function product to compute the residual

w ¼ f � ðI � KÞuc. After the computation of w, one solves

s� KDs ¼ w ð25Þ

as follows.

Let PD be the L2 projection onto V d. To solve (25) we first find sD ¼ PDs as follows. Since sD is uniquely

determined by its values at the coarse mesh nodes, we can solve a finite-dimensional fully discrete system for

sFDi ¼ sDðrDi Þ for i ¼ 1; . . . ;ND;

where the superscript FD indicates that the system is fully discrete, ND is the number of points in the coarse

mesh, and sFDi denotes the ith component of sFD 2 RND . The fully discrete coarse mesh equations for sFD are

sFDi �
X
j

kðrDi ; rDj ÞsFDj ¼ ðPDwÞðrDi Þ for i ¼ 1; . . . ;ND;

which one can solve with GMRES, for example. Since

KDs ¼KDPDs;

one can recover s at the fine-mesh points with the Nystr€om interpolation

sðrÞ ¼ wðrÞ þ ðKDPDsÞðrÞ:

The nested iteration form of this algorithm is Algorithm nest_richardson.

For nonlinear fixed point problems, we apply the preconditioned Richardson iteration to the linear
equation for the Newton step. Table 1 indicates that the number of coarse mesh iterations remains low, as

predicted the theory in [12]. More importantly, for D sufficiently small, a single nonlinear iteration will

suffice for each d and one can refine the mesh after each Newton iteration [12]. This means that only one

fine-mesh function evaluation is needed at each level.

Algorithm 3. Nested Richardson iteration for u� Ku ¼ f
nest_richardsonðu;K;D; lmaxÞ
l 0; d D
Solve uD � KDuD ¼ f to high accuracy.

while l < lmax do

d d=2; l lþ 1
Interpolate c2d to Xd to obtain cD.



Table 1

Iteration statistics: example 1

N Picard Newton-GMRES Multilevel

Rd idG Rd idG Rd iDG

65 3.5900 e+ 00 650 3.5900 e+ 00 85 3.5900 e+ 00 85

129 1.3696 e) 01 11 1.3696 e) 01 4 1.3696 e) 01 8

257 2.0031 e) 02 3 2.9413 e) 02 5 4.1900 e) 02 7

513 4.8144 e) 03 9 6.9937 e) 03 5 9.4120 e) 03 7

1025 2.3568 e) 03 14 1.5400 e) 03 5 2.0205 e) 03 7

2049 3.6543 e) 04 15 3.5596 e) 04 7 4.6015 e) 04 8

4097 8.2396 e) 05 22 8.4570 e) 05 5 1.0831 e) 04 8

8193 2.2253 e) 05 38 2.0784 e) 05 7 2.6411 e) 05 8

16,385 4.0075 e) 06 48 5.2729 e) 06 8 6.5042 e) 06 8

32,769 9.7738 e) 07 32 1.2263 e) 06 5 1.6132 e) 06 8

65,537 2.3869 e) 07 44 3.0647 e) 07 7 4.0169 e) 07 8
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w f � ðI � KdÞuD.
s ðI � KDÞ�1w.
ud  uD � s

end while

Algorithm nest_multilevel is the nonlinear multilevel algorithm for (10).

Algorithm 4. Nested multilevel algorithm for FðcÞ ¼ c�KðcÞ ¼ 0

nest_multilevelðc;F;D; lmaxÞ
l 0; d D � cD0  c
Solve F0

dðcDÞ ¼ 0 to high accuracy

with cD0 as the initial iterate.

while l < lmax do
d d=2; l! lþ 1

cd0  Id2dc
2d.

cd  cd � ðI �K0
DðcDÞÞ

�1
Fdðcd0Þ

end while

The cost of the computation differs from that of the nested Newton-GMRES algorithm only in that

there are no fine-mesh GMRES iterations. Hence, neglecting all coarse mesh work, the bound on the cost of

a solve to truncation error is

2CF ðdlmax
Þ:
3. Numerical results

In this section, we consider an example and compare the performance of the nested Picard iteration and

the nested Newton-GMRES method with the multilevel method proposed in Section 2. The initial iterate

on the coarse mesh was c0 ¼Kð0Þ for each method.

The computations were done in MATLAB 6.5, using the Newton-GMRES code from [14] for the nested

Newton-GMRES results and the coarse mesh computations for the multilevel results. The GMRES code
from [13] was used to solve the coarse mesh linear systems in the multilevel method.
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A nested iteration, if working properly, will decrease the error at each level in a way consistent with

theory. To illustrate this, we tabulate the scaled l2 norm of initial nonlinear residual at each mesh. In the

language of Algorithm nest_generic, we tabulate

Rd ¼ kFdðU d
0 Þk; where U d

0 ¼ Id2dU
2d

at each level. The scaled l2 norm of a vector in w 2 RN is

kwk ¼ 1ffiffiffiffi
N
p

XN
j¼1

w2
i

 !1=2

:

Because both the discretization and the coarse-to-fine intergrid transfer are second-order accurate, one

would expect these residual norms to decrease by factors of four as d! d=2. We also tabulate the number

of GMRES iterations iG for each nonlinear iteration. This refers to fine-mesh iterations idG (i.e., on Xd) for

Newton-GMRES and coarse mesh iterations iDG (i.e., on XD) for the multilevel method.

In each example the multilevel iteration is significantly less costly than the nested Newton-GMRES. The

multilevel iteration requires only one fine-mesh function evaluation for each iteration, while the Newton-

GMRES requires at least 5 for the two examples.
We report on computational experiments with the fixed point formulation (6) of the system (1)–(4). The

parameters in the equation, similar to those used in [8] are

� ¼ 0:1 kcal=mol; r ¼ 2 �A; q ¼ 0:2#=�A
3
; b ¼ 1=ðkT Þ ¼ 10; L ¼ 9: ð26Þ

In (26), # indicates that q is a number density, k is Boltzmann�s constant, and T is temperature. This

corresponds to a state in reduced units of q� ¼ 0:8 and T� ¼ 1:0. The coarse mesh had N ¼ 65 points,

making D ¼ 1=64. The finest mesh had N ¼ 8193 points with a mesh width of 1/8192.

In Table 1, we show the results for the Picard, Newton-GMRES and multilevel solvers. The most sig-
nificant things in the table are:

• The multilevel method is roughly six times faster than Newton-GMRES and 40 times faster than Picard.

• The performance of Picard iteration degrades as the mesh is refined.

• The accuracy of the discretization appears to be second order, since, for either method, Rd=R2d � 1=4 for

small d.
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